Le pouvoir I

Pouvoir corrompt. Toujours.

Rien n’est plus dangereux et plus fallacieux que le pouvoir, parce qu’il est impossible de l’acquérir, elle est toujours donnée volontairement. Il y a peut-être des instruments, techniques, et stratégies de faciliter, ou d’accélérer la libération de pouvoir, mais elle reste quand-même toujours une restitution volontaire.

Une fois goûter la saveur tentante et douce du pouvoir, on désire plus, voulant toujours plus, pour accumuler encore plus de pouvoir, sans arrêt, sans limites, et sans appui, parce qu’il ne suffira jamais. Ce jeu est encouragé par le fait qu’il n’y a vraiment pas de limite directe en accumulant de pouvoir. Plus on libère, plus on accumule. Mais où la limite manque, le point arrivera par la force des choses à un moment donné, où la grandeur du pouvoir dépassera la capacité du ego, et exactement à ce point l’ego succombera, puisque le dernier a de limite! Le risque du jeu d’accumulation, menant inévitablement à la perte, se trouve exactement à ce point là, où cette limite est atteint.

Il est fallacieux pour celui s’amusant avec le pouvoir, ayant ni de respect, ni de prévoyance, et devenant très rapidement la balle à jouer du pouvoir. Plus vite que désirer, plus vite qu’on pourrait le percevoir, et beaucoup plus puissant qu’on pourrait le manier ou contrôler. On glisse d’un rôle actif à un rôle réactif, duquel on n’arrive presque plus de s’en fuir.

Pour cette raison la seule manière correcte de gérer le pouvoir est de la refuser fondamentalement, d’avance, et constamment. Toujours.

Might I

Might corrupts. Always.

Nothing is more dangerous, and more fallacious than might, since it can’t be recuperated at all, it is always given voluntarily. There may be instruments, techniques, and strategies to facilitate, or to accelerate the clearance of might, but it will always remain to be a voluntary withdrawal.

Once tasted the tempting and sweet flavor of might, you want more, and you will always aim to accumulate more, still more, on and on, entirely limitless and without foothold, since it will never be enough. This game is promoted by the fact, that there is really no direct limit in expanding might. The more clearance, the more you accumulate. But where the limit is missing, the point, where the greatness of might overruns the capacity of the ego will necessarily appear at any time, and exactly at that point the ego will underlie, since the latter has limits! The risk of this game of accumulation, leading to the unavoidable downfall, resides exactly at that point, where this limit is reached.

It is fallacious for one gambling with might, having neither respect, nor vision, and becoming himself very quickly the cue ball of might. Faster than desired, faster than it could be recognized, and by far more powerful than it could be handled or controlled. Sliding from an active to a reactive role, where it becomes almost impossible to escape from.

Therefore the only proper way to deal with might is to refuse it generally, from the first, and consequently. Always.

Schöne Zahlen?

Es gibt fünf Zahlen, die als die schönsten Zahlen der Mathematik gelten, und sie sind durch eine einzelne, simple Formel miteinander verknüpft:

Zwei – die Null und die Eins – gehören zu der Menge der Ganzen Zahlen, zwei weitere – e und Pi – gehören zu der Menge der Irrationalen Zahlen, und sind transzendente Zahlen besonderer Bedeutung, und die letzte Zahl „i“ öffnet zum ersten Mal den Weg zu mehrdimensionalen Zahlen.

Die Null

Sie ist nicht einfach nur eine „Hilfsgröße“, die irgendwann einmal im Laufe der Entwicklung der Mathematik als „erforderlich“ oder als „algebraische Notwendigkeit“ erfunden, bzw. entdeckt wurde, sondern sie kennzeichnet eine ganz besondere Position, mit einer sehr speziellen Bedeutung. Sie wird nicht umsonst mit einem elliptischen, oder runden Kreis dargestellt. Oder sollte man lieber sagen – eiförmig? Denn hier sitzt der Ursprung, der Start- und Ausgangspunkt, die Geburtsstätte aller Zahlen.

Die Eins

Die erste Manifestation einer Zahl, und die Basis aller Zahlen. Erst mit ihr wird „zählen“ überhaupt möglich. Der kleinstmögliche Abstand in der Menge der Natürlichen, und Ganzen Zahlen.

Die eulersche Konstante „e“

Sie wurde vom Mathematiker Leonhard Euler erarbeitet, ausführlich beschrieben, und ist die Basis des natürlichen Logarithmus und der natürlichen Exponentialfunktion. Mit ihr lässt sich der Verlauf einer Spirale ausdrücken, wie sie in vielerlei Formen in der Natur auftritt – wie z.B. in der Windung eines Schneckenhauses, den Linien eines Tannenzapfens, und der Anordnung der Samen in einer Sonnenblume. Aber auch natürliche Wachstums- und Zerfallsprozesse lassen mit ihr elegant und präzise ausdrücken. Letztlich deutet sie über viele Wege auf ihre direkte Verwandtschaft mit dem kosmischen Prinzip des Wirbels hin.

Die Kreiszahl „Pi“

Bereits der griechische Mathematiker Archimedes befasste sich um 250 v.Chr. mit der numerischen Eingrenzung der Kreiszahl Pi, und startete damit eine mathematische Rekordjagd nach einer möglichst präzisen Berechnung ihres Zahlenwerts. Der unmittelbare Zusammenhang zum Kreis kommt allein schon durch den Namen zum Ausdruck, und setzt Pi damit in eine direkte Verbindung zur wohl ursprünglichsten, geometrischen Form höchster Symmetrie – ebenfalls ein im Kosmos prädominantes Prinzip.

Die imaginäre Zahl „i“ – Wurzel aus -1

Hier wird es nun ernsthaft schwierig mit der Vorstellungskraft. Transzendente Zahlen sind bereits schwer zu erfassen, da sich ihr numerischer Zahlenwert durch eine unendliche Folge von Ziffern hinter dem Komma ausdrückt. Aber was fängt man mit der Wurzel aus einem negativen Vorzeichen an?
René Descartes war 1637 wohl der erste, der diesem Ausdruck den Namen „imaginär“ gab, da es sich hier eindeutig um etwas nicht direkt greifbares handelt. Formal lässt sich dieser Ausdruck in der Mathematik recht gut handhaben, und führt zu den sogenannten „komplexen“ Zahlen. Gewissermaßen zweidimensionale Zahlen, die einen realen Anteil haben – also Zahlen, wie man sie schon kennt -, und einen imaginären Anteil, der wieder mit einer bereits bekannten Form von Zahlen ausgedrückt wird, zusätzlich aber eben noch den Faktor „i“ erhält. Was in der Mathematik zu eleganten Lösungsansätzen von Problemen führt, die sich teilweise ohne komplexe Zahlen überhaupt nicht lösen lassen würden, bleibt für die Phantasie allerdings ein Rätsel. Vielleicht ist aber auch nur der Name etwas ungünstig gewählt, und man sollte es besser „imateriell“, als „imaginär“ bezeichnen, weil es einfach zum Ausdruck bringt, dass es neben den greifbaren, materiellen Dingen auch noch etwas anderes gibt…

Leider fehlt in diesem Zusammenhang eine sechste Zahl, die ebenfalls zur Menge der irrationalen Zahlen gehört, transzendent ist, und wahrscheinlich die ausgeprägteste Bedeutung in der Schöpfung hat – das Verhältnis des goldenen Schnitts Phi. Ein Faux Pas der Mathematik? Vielleicht hinkt aber auch einfach nur die Definition einer mathematisch schönen Zahl…

Macht I

Macht korrumpiert. Immer.

Nichts ist gefährlicher und trügerischer als Macht, denn es ist unmöglich sie zu erlangen, sie wird einem immer nur freiwillig geben. Es mag Instrumente, Techniken und Strategien geben, mit denen die Freigabe von Macht unterstützt, oder beschleunigt werden kann, aber es bleibt trotz allem immer bei einer freiwilligen Herausgabe.

Hat man den verführerischen und süßen Geschmack der Macht einmal gekostet, möchte man natürlich mehr, und wird immer weiter bestrebt sein, die einmal erlangte Macht weiter anzuhäufen, immer mehr, und immer weiter, völlig grenzenlos und ohne jeden Halt, denn es wird nie genug sein. Gefördert wird dieses Spiel dadurch, dass es tatsächlich keine unmittelbaren Begrenzungen darin gibt, Macht auszudehnen. Je mehr freigegeben wird, desto mehr häuft sie sich auch an. Wo aber keine Grenze ist, wird irgendwann zwangsläufig der Punkt kommen, an dem die Größe der Macht die Kapazität des Egos übersteigt, und genau an diesem Punkt wird das Ego unterliegen, denn letzteres hat Grenzen! Genau hier liegt die Gefahr, die mit dem Spiel der Anhäufung zum sicheren Untergang wird, sobald dieser Punkt erst einmal erreicht ist.

Trügerisch wird es aber für denjenigen, der mit der Macht spielt, denn er hat weder Respekt, noch Weitsicht, und wird sehr schnell selbst zum Spielball von Macht. Schneller als ihm lieb ist, schneller als man es erkennen könnte, und wesentlich kraftvoller als man es handhaben oder kontrollieren könnte. Man rutscht von der aktiven in die reaktive Rolle, aus der es so schnell kein Entkommen gibt.

Daher ist der einzig richtige Umgang mit Macht immer nur der, sie grundsätzlich, von vorne herein, und konsequent zu verweigern. Immer.